
1508  |     Methods Ecol Evol. 2021;12:1508–1520.wileyonlinelibrary.com/journal/mee3

 

Received: 20 October 2020  |  Accepted: 12 April 2021

DOI: 10.1111/2041-210X.13622  

R E S E A R C H  A R T I C L E

SuessR: Regional corrections for the effects of anthropogenic 
CO2 on δ13C data from marine organisms

Casey T. Clark1,2  |   Mattias R. Cape3  |   Mark D. Shapley4  |   Franz J. Mueter5  |   
Bruce P. Finney6  |   Nicole Misarti2

1Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA, USA; 2Water and Environmental Research Center, 
University of Alaska Fairbanks, Fairbanks, AK, USA; 3School of Oceanography, University of Washington, Seattle, WA, USA; 4CDSCO/National Lacustrine 
Core Facility, University of Minnesota, Minneapolis, MN, USA; 5College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, AK, USA and 
6Departments of Biological Sciences and Geosciences, Idaho State University, Pocatello, ID, USA

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society

Correspondence
Casey T. Clark
Email:casey.t.clark@gmail.com

Funding information
University of Alaska Faculty Initiative 
Fund; National Oceanic and Atmospheric 
Administration, Grant/Award Number: 
NA15OAR4320063 and NA20OAR4320271

Handling Editor: Robert Freckleton

Abstract
1. Anthropogenic CO2 emissions associated with fossil fuel combustion have caused 

declines in baseline oceanic δ13C values. This phenomenon, called the Suess ef-
fect, can confound comparisons of marine δ13C data from different years. The 
Suess effect can be corrected for mathematically; however, a variety of disparate 
techniques are currently used, often resulting in corrections that differ substan-
tially. SuessR is a free, user- friendly tool that allows researchers to calculate and 
apply regional Suess corrections to δ13C data from marine systems using a unified 
approach.

2. SuessR updates existing methods for calculating region- specific Suess corrections 
for samples collected from 1850 to 2020. It also estimates changes in phytoplank-
ton 13C fractionation associated with increasing water temperature and aqueous 
CO2 concentrations, referred to here as the Laws effect. SuessR version 0.1.3 
contains four built- in regions, including three in the subpolar North Pacific (Bering 
Sea, Aleutian Islands and Gulf of Alaska) and one North Atlantic region (Subpolar 
North Atlantic). Users can also supply environmental data for regions not cur-
rently built into SuessR to generate their own custom corrections.

3. In 2020, net corrections (Suess + Laws corrections) were as follows— Bering Sea: 
1.29‰; Aleutian Islands: 1.30‰, Gulf of Alaska: 1.30‰; and Subpolar North 
Atlantic: 1.31‰ (compared to a global atmospheric CO2 change of ~2.43‰ across 
the same period). For samples collected in 2020, the net correction exceeds in-
strumental error (±0.2‰) when making comparisons across only eight years (i.e. 
2013– 2020). The magnitude of the Suess effect calculated by SuessR aligns with 
published estimates, whereas the Laws effect is smaller than previously calcu-
lated, resulting from updated estimates of average community cell sizes, growth 
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1  | INTRODUC TION

Anthropogenic emissions of carbon dioxide, primarily through com-
bustion of fossil fuels, have altered the baseline δ13C values of the 
planet's atmosphere and oceans since the Industrial Revolution 
(Keeling, 1979). This δ13C decline is commonly referred to as the 
Suess effect, and has been increasing in magnitude exponentially, in 
tandem with the exponential increase in 13C- depleted CO2 emissions 
(Bacastow et al., 1996). The shifting δ13C baseline is incorporated 
into biological systems by way of photosynthetic organisms, which 
fix ambient CO2. These effects propagate throughout food webs, as 
the stable carbon isotopes of primary producers are incorporated 
into the tissues of consumers. For ecologists seeking to examine 
changes in δ13C values over time to understand animal migratory 
movements, food web structure and trophic interactions, as well as 
animal and plant physiology, the Suess effect has the potential to 
confound analyses (Misarti et al., 2009).

In addition to the shifts in δ13C that characterize the Suess effect, 
increasing atmospheric CO2 concentrations affect plant physiology 
in ways that may impact stable carbon isotope fractionation during 
photosynthesis (Keeling et al., 2017). In marine and aquatic systems, 
13C fractionation by phytoplankton changes in relation to water tem-
perature and aqueous CO2 concentrations (Laws et al., 2002). Thus, 
warming of the global oceans observed in recent decades, as well as 
substantial increases in atmospheric and aqueous CO2 concentra-
tions during this same period, has also altered baseline δ13C values 
in marine ecosystems. The impacts of water temperature (via com-
munity composition and growth rates) and aqueous CO2 concentra-
tions on stable carbon isotope fractionation by phytoplankton were 
described mathematically by Laws et al. (2002), and are hereafter 
referred to as the Laws effect.

Efforts have been made to quantify and mathematically correct 
for the Suess and Laws effects, primarily by historical ecologists, 
palaeoecologists and archaeologists comparing δ13C values across 
broad timeframes. These researchers typically correct historic and 
modern values back to preindustrial times (i.e. the year 1850, the 

onset of the Industrial era and the beginning of exponential in-
creases in anthropogenic CO2 emissions into the atmosphere and 
oceans; Ruddiman, 2013). However, as the burning of fossil fuels 
has continued to produce exponentially increasing releases of an-
thropogenic CO2 (Bacastow et al., 1996), the year- to- year changes 
in the magnitude of the Suess effect (and to a lesser extent, the 
Laws effect) have increased substantially. As of 2020, the summed 
magnitude of the Suess and Laws corrections for δ13C values from 
the Bering Sea, calculated using the methods described in this 
paper, exceeds the typically reported value for instrumental preci-
sion for isotope ratio mass spectrometers (±0.2‰) when compar-
ing samples across just 8 years (i.e. comparing samples from 2020 
to samples from 2013; Figure 1). Thus, the Suess and Laws effects 
introduce detectable error in comparisons of modern stable car-
bon isotope data collected over less than a decade. This suggests 
that corrections for the Suess and Laws effects are no longer only 
the concern of historical ecologists, palaeoecologists and archae-
ologists, and that these corrections should be incorporated into 
contemporary ecological studies comparing isotope values over 
spans of 8 years or more. Although calculation of mathematical 
Suess corrections has become relatively commonplace, the meth-
ods used vary widely and can produce substantially different re-
sults (Figure 1), highlighting the need for a unified approach to 
calculate Suess and Laws corrections for δ13C data.

The SueSSR package is a tool for calculating and applying mathe-
matical corrections for the Suess and Laws effects. These corrections 
are region- specific, accounting for the complex spatial variability in 
seawater circulation, surface residence time, water temperature and 
biological production that impact CO2 uptake by the oceans (Eide 
et al., 2017), as compared with the relatively homogeneous and 
well- mixed global atmosphere. The purpose of this R package is to 
provide a simple and effective tool that allows ecologists to apply 
these corrections to δ13C data from marine systems using a single, 
unified methodology. Additionally, users will be able to supply their 
own region- specific parameters to the Suess and Laws corrections, 
and are encouraged to submit these data for incorporation into the 

rates and permeability of phytoplankton plasmalemmas (the plasma mem-
brane which bounds the cell) to CO2.

4. The increasing magnitude of the Suess effect means this phenomenon is 
no longer only of concern to historical ecologists, but now affects contem-
porary ecological studies using δ13C data. This highlights the importance of 
a unified approach for generating Suess corrections. The SueSSR package 
provides a customizable tool that is simple to use and will improve the in-
terpretability and comparability of future stable isotopic studies of marine 
ecology.

K E Y W O R D S

carbon dioxide, carbon isotopes, fractionation, phytoplankton, Suess correction, 
Suess effect
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SueSSR package, thereby increasing the number of built- in regions 
available in future versions.

2  | BACKGROUND AND THEORY

2.1 | The Suess correction

Marine ecologists have used a variety of approaches to mathemat-
ically correct for the Suess effect. The magnitude of these correc-
tions can vary widely, and a single approach often gains popularity 
within an individual sub- field (e.g. seabird research), making it 
more difficult to compare the results of studies performed on 
different taxa. The most basic Suess correction involves adding a 
fixed value (e.g. 1‰) to the δ13C values of modern samples to make 
them comparable to archaeological or historic specimens that lived 
prior to the Industrial Revolution (e.g. Conrad et al., 2018; Elliott 
Smith et al., 2020; Halffman et al., 2015; Newsome et al., 2004; 
Zangrando et al., 2016). This method of correction is simple and 
straightforward, but requires that modern samples represent a 
‘snapshot’, rather than a time series, and that they be collected 
within a few years of one another. Furthermore, it requires a 

good estimate of the magnitude of the Suess effect in the year(s) 
of sample collection. The use of a 1‰ correction by papers pub-
lished as early as 2004 and as late as 2016 indicates that there is 
room for improvement in these estimates. To allow for compari-
son of samples collected at different times during the Industrial 
era, researchers have used linear estimates of the rate of change 
of δ13C values associated with the Suess effect, typically based 
on δ13C values of dissolved inorganic carbon (DIC) in a particular 
region or ocean basin (e.g. – 0.018‰ per year across the entire 
North Atlantic basin; Quay et al., 2007), to calculate annual cor-
rections (e.g. Espinasse et al., 2019; Matthews & Ferguson, 2014; 
Ramos et al., 2020; Rossman et al., 2013; Soto et al., 2018). An 
improved version of this approach incorporates an increase in the 
rate of δ13C decline after a specific year (e.g. 1950), to better ap-
proximate the exponential shape of the Suess effect curve (e.g. 
Alter et al., 2012; Bond & Lavers, 2014; Farmer & Leonard, 2011; 
Sun et al., 2019; Vokhshoori et al., 2019). Both of these methods 
allow for region- specific Suess corrections; however, there are 
also added complications. Researchers will typically correct all 
samples back to the first year of their time series (e.g. 1930) or 
forward to the last year (e.g. 2010), thereby generating the Suess 
corrected δ13C values that are comparable to one another, but not 
to pre- Industrial samples or to results produced from other stud-
ies that are corrected to a different year. When used to correct 
samples back to preindustrial δ13C levels (i.e. back to ~1850), these 
approaches tend to substantially overestimate the magnitude of 
the Suess effect (Figure 1), though they may produce more realis-
tic corrections when applied to a restricted period of time.

Other Suess corrections have been generated using nonlinear 
models based on measured changes in environmental δ13C values. 
Researchers working in lakes have used higher- order polynomial 
models based on atmospheric trends to estimate the magnitude of 
the atmospheric Suess effect, assuming these systems are close to 
equilibrium with the atmosphere (e.g. Verburg, 2007). Some studies 
have applied these atmospheric corrections to marine systems by 
applying a lag to account for the incorporation of atmospheric CO2 
into surface waters (e.g. Vales et al., 2020), which is likely a better 
approximation of the Suess effect than provided by linear models; 
however, it is unclear whether the 10- year lag appropriately cap-
tures the disequilibrium between the atmospheric and oceanic 
Suess effect (Figure 1). Hilton et al. (2006) used values from the 
published literature to develop a more complex Suess correction, 
which accounts for the observed exponential decline in δ13C values 
of dissolved inorganic carbon in the global oceans associated with 
the absorption of anthropogenically produced CO2. This correction 
also included a constant accounting for regional differences in CO2 
uptake by the ocean. Misarti et al. (2009) subsequently updated 
and adapted this correction for the Gulf of Alaska, and corrected 
an error in the original equation published by Hilton et al. (2006), 
where an addition symbol had been substituted for a multiplication 
symbol. The resulting equation (Misarti et al., 2009) is:

Suess effect correction = a × e(b× 0.027)

F I G U R E  1   Comparison of commonly used methods of Suess 
correction. Farmer and Leonard (2011) used a linear δ13C decline 
of – 0.007‰ per year for samples collected from 1896 to 1950 and 
a further δ13C decline of – 0.026‰ per year from 1951 to 2006 
(solid blue). The dashed blue line shows the Farmer and Leonard 
correction applied back to 1860, the year they reference as the 
beginning of the yearly – 0.007‰ decline. Verburg (2007) fit a 
sixth- order polynomial to a time series of atmospheric δ13C data 
to estimate the magnitude of the Suess effect in Lake Tanganyika 
(solid orange). Vales et al. (2020) added a 10- year lag to Verburg's 
equation and applied it to marine samples (dashed orange). The 
solid green line represents the net (combined Suess and Laws) 
corrections generated by SuessR for the Bering Sea. The shape and 
position of the SuessR correction in relation to the atmospheric line 
(solid orange) reflect the expected lag between the oceanic and 
atmospheric Suess effects, whereas the other approaches tend to 
overcorrect
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In this equation, a is a constant reflecting the maximum observed 
rate of δ13C decline in surface waters DIC in a specific region, b is 
the year of sample collection minus 1850 (the onset of the Industrial 
Revolution) and 0.027 is the parameter value obtained by Hilton 
et al. (2006) after fitting an exponential curve to the global ocean 
δ13C data from 1945 to 1997 published by Gruber et al. (1999). 
The resulting Suess effect correction (a negative value) may then 
be subtracted from the uncorrected δ13C data to obtain the Suess- 
corrected δ13C value. This equation has since been used by nu-
merous studies to calculate regional Suess corrections (e.g. Clark 
et al., 2019; Guiry et al., 2020; Harris et al., 2020; Kochi et al., 2018).

2.2 | The Laws correction

The second correction calculated and applied by SuessR was de-
veloped by Laws et al. (2002), and takes into account shifts in sta-
ble carbon isotope fractionation by phytoplankton associated with 
changes in water temperature, aqueous CO2 concentrations and 
phytoplankton physiology. The equation for estimating the differ-
ence between aqueous CO2 δ13C values and those of the products 
of photosynthesis by phytoplankton (i.e. stable carbon isotope frac-
tionation by phytoplankton, εp) is:

In this equation, ε1 represents the isotopic fractionation associated 
with diffusion of DIC into the cell, whereas ε−1 represents the isotopic 
fractionation associated with diffusion of DIC out of the cell. Both of 
these terms are assumed to be constant at 1‰, and to cancel one an-
other out (Laws et al., 2002); thus, their appearance at the beginning of 
the above equation serves primarily as a reminder of this assumption. 
The isotopic fractionation associated with carboxylation, represented 
in this equation by ε2, is assumed to be constant at 26.5‰, the median 
of the values presented by Laws et al. (2002). β is the ratio of net diffu-
sional loss of CO2 to carbon fixation, and is assumed to be constant. P 
reflects the permeability of the plasmalemma (the plasma membrane 
which bounds the cell) to CO2 (p) multiplied by the surface area of the 
cell (thus, P = p × cell surface area, with p in m/day), C the organic 
carbon content of the cell (in gC/cell) and μ is the average growth rate 
(in day−1) of phytoplankton in a given region and year. Both P and C 
are proportional to cell size, with P scaling to a cell's surface area and 
C to cell volume. [CO2]aq (in µmol/kg) represents the concentration of 
aqueous CO2 in the seawater.

Estimates of [CO2]aq are calculated by multiplying the estimated 
fugacity of the CO2 in the ocean (fCO2ocean

, in µatm) by the solubility of 
CO2 in seawater at a given temperature and salinity (K0). Calculating 
annual estimates of fCO2ocean

 first requires comparing the regional 
rates of change of fCO2atmosphere

 and fCO2ocean
 to determine the propor-

tion of atmospheric CO2 concentration increase exhibited by the 
ocean in a given year. For example, if fCO2atmosphere

 in a particular re-
gion increases by 10 µatm and fCO2ocean

 by 6 µatm over the course of 

a decade, the annual increase in surface seawater fugacity (ΔfCO2ocean

) for this region can be estimated by multiplying measured changes 
in fCO2atmosphere

(

ΔfCO2atmosphere

)

 by 0.6. We refer to this number as the pro-
portional rate of change (CP). Annual estimates of fCO2ocean

 can thus 
be calculated using the following equation:

This approach requires an assumed starting value for fCO2ocean
 at the 

beginning of the record (fCO2ocean t=0
). Additionally, because records of 

atmospheric CO2 concentrations are presented in parts per million 
(ppm), this approach assumes that CO2 behaves as an ideal gas and that 
fCO2atmosphere

 is directly proportional to atmospheric CO2 concentrations. 
Annual estimates of K0 can be generated using the following equation 
from Weiss (1974):

In this equation, absolute temperature (T, in degrees Kelvin) and sea 
surface salinity (SSS), along with constants A1– 3 and B1– 3, are used to 
calculate the natural log of K0 in ln(moles/l·atm). Once these terms 
have been calculated, they can be used to generate yearly estimates of 
[CO2]aq using the following equation:

To calculate the Laws correction, which is the overall change in εp by 
phytoplankton since 1850, the estimated stable carbon isotope frac-
tionation from 1850 is subtracted from that of the year in which a sam-
ple was collected:

Sea surface temperature (SST) and aqueous CO2 concentrations have 
opposite effects on εp, with increases in SST leading to smaller εp values, 
and increases in [CO2]aq resulting in higher values for εp. Since 1850, in-
creases in aqueous CO2 concentrations have had more of an effect on εp 
than have increasing water temperatures, and εp has increased across the 
last ~170 years. Thus, the Laws correction is typically a positive number 
added to the sample's δ13C value to account for this increase in εp (be-
cause increasing 13C fractionation through time means more negative 
δ13C values in later years) and provide the Laws- corrected data.

3  | IMPLEMENTATION AND APPLIC ATION 
OF THE S u e S S R  PACK AGE

3.1 | Overview of SueSSR

Version 0.1.3 of SuessR includes four built- in regions for which users 
may calculate Suess and Laws corrections and apply them to their 

�p = �2 + �1 − �−1 −
1

{

1 +

[

[CO2]aq ×
P

� ×C× (1+ �)

]} ×

(
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)
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data. These include three North Pacific regions (Bering Sea, Aleutian 
Islands, Gulf of Alaska; Figure 2; Table S1) and one North Atlantic 
region (Subpolar North Atlantic; Figure 2; Table S1). Additionally, the 
package includes the SuessR.custom() function, which allows users 
to supply their own regional parameters for the Suess and Laws 
Corrections. It is our hope that users will submit these data to the 
authors of the package for inclusion in future versions of SuessR. 
The updates to the equation used to generate the Laws correction 
and the introduction of the function for calculating the regional up-
take constant for the Suess correction were primarily aimed at facili-
tating the process of using the SueSSR package for custom regions. 
Users choosing to parameterize the Suess and Laws corrections for 
custom regions should have a thorough understanding of the physi-
cal, chemical and biological systems in the region of interest, and 
careful consideration is required to avoid erroneous results. Users 
intending to do so must make a number of important considerations 
pertaining to their region(s) of interest and the organisms sampled by 
their study. SuessR is available on CRAN (https://cran.r- proje ct.org/
web/packa ges/Suess R/index.html) and can be installed command 
‘install.packages(‘SuessR’)’ in the R console. A web- based Shiny app 
that allows users to interact with SuessR using a graphical user inter-
face is also available (https://suessr.shiny apps.io/Suess R/).

3.2 | Calculation of the Suess correction

The SueSSR package uses the equation developed by Hilton 
et al. (2006) and modified by Misarti et al. (2009), but introduces a 
different method for calculating the regional uptake constant a. To 
calculate this constant, the observed decline in DIC δ13C in a spe-
cific region over a given period is typically treated as a linear change 
and is divided by the number of years over which the change was 
observed, thus producing an annual rate of δ13C change. Taking the 
linear slope of an exponential curve will, however, produce substan-
tially different results depending on which portion of the curve is 
used for the calculation. Thus, data from the same region will provide 

different rates of δ13C change if data are examined from 1970 to 
1979 and from 2000 to 2009, with the latter producing a larger an-
nual change. To address this problem, the SueSSR package contains a 
function that derives the regional uptake constant using a different 
approach. Because the observed change in δ13C DIC across a span of 
time closely approximates the magnitude of the Suess effect across 
that period, we can solve for the regional uptake constant using the 
Suess correction equation as follows:

In this way, the regional uptake constant for any body of water can 
be calculated using observed changes in δ13CDIC from any time pe-
riod. This approach assumes that the regional uptake constant for a 
given body of water has remained the same since 1850. Once this term 
has been estimated, calculating and applying the Suess correction is 
straightforward.

The regional uptake constants used for SuessR's built- in regions 
include an update to those used by Misarti et al. (2009) for the North 
Pacific and a new estimate for the subpolar North Atlantic. Watanabe 
et al. (2011) estimated the oceanic Suess effect in the subpolar North 
Pacific to have a linear rate of δ13CDIC decline of – 0.019‰ per year 
between 1997 and 2006. Using the above equation to solve for a re-
sults in a regional uptake constant of – 0.013. In the subpolar North 
Atlantic, interpretation of observed δ13CDIC declines is complicated 
by changes in water mass properties (Quay et al., 2007); however, 
Quay et al. (2007) estimated a decline of – 0.017‰ per year between 

Suess effectYear 1 = a × e(b1 × 0.027)

Suess effectYear 2 = a × e(b2 × 0.027)

Observed change in �13CDICYear 2 - Year 1
= Suess effectYear 2 − Suess effectYear 1

Observed change in �13CDICYear 2 - Year 1
= a × e(b2 × 0.027) − a × e(b1 × 0.027)

a =
Observed change in δ13CDICYear 2 - Year 1

(

e(b2 × 0.027) − e(b1 × 0.027)
)

F I G U R E  2   Map of regions built into version 0.1.3 of SuessR: Bering Sea, Aleutian Islands, Gulf of Alaska and Subpolar North Atlantic. 
Coordinates of polygon corners are listed in Table S1

https://cran.r-project.org/web/packages/SuessR/index.html
https://cran.r-project.org/web/packages/SuessR/index.html
https://suessr.shinyapps.io/SuessR/
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1993 and 2003 using an isopycnal multiple linear regression, which 
matched well with other estimates from the North Atlantic. This 
estimate yields a regional uptake constant of – 0.013. The identical 
values calculated for the subpolar North Pacific and subpolar North 
Atlantic seem reasonable, given that the majority of the variation 
in the Suess effect in the surface ocean is associated with latitude 
(Eide et al., 2017; Quay et al., 2003, 2007), although there are some 
indications that the Suess effect may be slightly more pronounced in 
the subpolar North Atlantic (Eide et al., 2017).

3.3 | Calculation of the Laws correction

Using reconstructions and records of annual atmospheric CO2 con-
centrations, sea surface temperature (SST) and sea surface salinity 
(SSS), yearly estimates of regional aqueous CO2 concentrations can 
be generated back to 1850. These data were compiled from various 
gridded global datasets, using version 0.4.8 of the ReRddapXtRacto 
package in R (Mendelssohn, 2020). SST data were taken from the 
Extended Reconstructed Sea Surface Temperature (ERSST) v5 data-
set (Huang et al., 2017; https://www.ncdc.noaa.gov/data- acces s/
marin eocea n- data/exten ded- recon struc ted- sea- surfa ce- tempe 
ratur e- ersst - v5). This dataset extends from AD 1854 to present, and 
provides global monthly SST estimates in a 2° × 2°grid. The mean 
annual SSTs from 1854 to 1864 were used to approximate the SST 
for the years from 1850 to 1853. It should be noted that the grid-
ded values extend from 88°S to 88°N, and are centred on the even 
values such that the grid point at 50°N and 160°W extends from 
49°N to 51°N and from 159°W to 161°W. The spatial scale of the 
2° × 2° grid was a determining factor in the delineation of the built-
 in regions included in the SueSSR package (Figure 2; Table S1). Sea 
surface salinity (SSS) was compiled from two datasets. Version 2.2.4 
of the Simple Ocean Data Assimilation (SODA) contains monthly 
mean salinity estimates for 1871 to 2010 on a 0.5° × 0.5° grid (Giese 
& Ray, 2011; https://iridl.ldeo.colum bia.edu/SOURC ES/.CARTO N- 
GIESE/ .SODA/.v2p2p 4/?Set- Langu age=en). Annual means for the 
period from 1850 to 1870 were approximated using the mean SSS 
estimates for 1871 to 1890. For 2011 and later, salinity data were 
taken from version 6.6.2 of the Microwave Imaging Radiometer 
using Aperture Synthesis (MIRAS) Soil Moisture and Ocean Salinity 
(SMOS) dataset (Sea Surface Salinity- Near Real Time- MIRAS SMOS, 
2020; https://coast watch.noaa.gov/cw/satel lite- data- produ cts/
sea- surfa ce- salin ity/miras - smos.html). These data are gridded at 
0.25° × 0.25° and are available as a 3- day mean. Annual mean salin-
ity estimates were calculated for the regions included in the SueSSR 
package. Some mismatch may exist between the SODA and MIRAS 
SMOS salinity estimates; however, these are typically small and re-
sult in negligible differences in the overall Laws correction. These 
datasets were selected because their spatial scale is global and they 
contain gridded data. Thus, users wishing to apply Suess and Laws 
corrections to data from regions not built into the package will be 
able to extract SST and SSS data for their region of interest from 
these same data sources.

Atmospheric CO2 concentrations (in ppm) from 1850 to 2020 
were downloaded from the Scripps CO2 program (https://scrip psco2.
ucsd.edu/). This dataset compiles reconstructed CO2 concentration 
estimates from ice cores (prior to 1958), and measurements taken at 
Mauna Loa, Hawaii, and the South Pole (1958– present), to create a 
merged, yearly global CO2 record (Keeling et al., 2005; MacFarling 
Meure et al., 2006). Atmospheric CO2 concentrations were then 
used to produce yearly estimates of [CO2]aq using the equations in 
Section 2.2 of this paper. For these calculations, the initial fCO2ocean

 
was assumed to be 285.78 ppm, the mean estimate of atmospheric 
CO2 concentrations for the years 1940– 1949. Estimates of the pro-
portional rate of change of fCO2ocean

 in relation to fCO2atmosphere
 were 

calculated using regional data from the Surface Ocean CO2 Atlas 
(SOCAT; Bakker et al., 2016, https://www.socat.info/index.php/
data- acces s/) and the rate of fCO2atmosphere

 increases in the Northern 
Hemisphere. Given relative sparsity of fCO2ocean

 data in both time and 
space, ΔfCO2ocean

 was calculated by fitting linear regressions to yearly 
fCO2ocean

 from 1970s to 2010s (Pacific: 1970, 1973– 1980, 1982– 1983, 
1985– 2019; Atlantic: 1981– 1982, 1989– 2019), for a broad area in 
the subpolar North Pacific (from 45° to 65° latitude and 150° to 
– 130° longitude) and subpolar North Atlantic (from 45° to 70° lat-
itude and – 60° to 0° longitude). This resulted in a 1.57 µatm/year 
increase in the subpolar North Pacific, and a 1.74 µatm/year increase 
in the subpolar North Atlantic. Rates of fCO2atmosphere

 increase were 
calculated for each of the built- in regions using the methods outlined 
in Wang et al. (2016), with parameters from Weiss (1974) and Weiss 
and Price (1980). For these calculations, sea level pressure (SLP) data 
were downloaded from the ERA5 dataset (https://www.ecmwf.int/
en/forec asts/datas ets/reana lysis - datas ets/era5), and dry air CO2 
data (xCO2) from the National Oceanographic and Atmospheric 
Administration (NOAA) Marine Boundary Layer (MBL) Reference 
dataset (https://www.esrl.noaa.gov/gmd/ccgg/mbl/data.php). 
Previously downloaded SST and SSS data from the ERSST v5, SODA 
and MIRAS SMOS datasets were also used. Calculated fCO2atmosphere

 
values were then summarized to yearly averages from 1979 to 2018, 
and used to calculate a regional rate of fCO2atmosphere

 increase. This 
resulted in a rate of increase of 1.78, 1.78 and 1.77 µmol/year for 
the Bering Sea, Aleutian Islands and the Gulf of Alaska, respectively. 
This yielded a proportional rate of change of 0.88 for the Bering Sea 
and Aleutian Islands, and 0.89 for the Gulf of Alaska. The calculated 
rate of fCO2atmosphere

 increase for the Subpolar North Atlantic was 
1.74 µmol/year; thus, the observed rate of increase for fCO2ocean

 was 
equal to that of the atmosphere. This region of the North Atlantic 
has experienced changes in water mass properties that has led to 
fCO2ocean

 increases that are unrelated to uptake of CO2 from the at-
mosphere (Quay et al., 2007; Schuster et al., 2009), introducing a 
confounding factor into these analyses. Although the proportion of 
atmospheric CO2 increase exhibited by the surface ocean could not 
be directly estimated for this region, the calculated value of 1.00 
in the Subpolar North Atlantic was likely only slightly higher than 
the actual value, given the similar magnitudes of previous estimates 
of the Suess effect in the Subpolar North Pacific and Atlantic (Eide 
et al., 2017; Quay et al., 2007). This indicates that the true Cp for 

https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5
https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5
https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5
https://iridl.ldeo.columbia.edu/SOURCES/.CARTON-GIESE/.SODA/.v2p2p4/?Set-Language=en
https://iridl.ldeo.columbia.edu/SOURCES/.CARTON-GIESE/.SODA/.v2p2p4/?Set-Language=en
https://coastwatch.noaa.gov/cw/satellite-data-products/sea-surface-salinity/miras-smos.html
https://coastwatch.noaa.gov/cw/satellite-data-products/sea-surface-salinity/miras-smos.html
https://scrippsco2.ucsd.edu/
https://scrippsco2.ucsd.edu/
https://www.socat.info/index.php/data-access/
https://www.socat.info/index.php/data-access/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.esrl.noaa.gov/gmd/ccgg/mbl/data.php
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the Subpolar North Atlantic was likely somewhere between ~0.88 
and 1.00. To be conservative, the calculated value (Cp = 1.00) was 
used for this region, which matches with reports that CO2 concen-
trations in North Atlantic surface waters are increasing at about the 
same rate as the atmosphere (Eide et al., 2017). It is possible that ap-
parent changes in fCO2ocean

 in other regions may also be confounded 
by changes in water mass properties, and this possibility should be 
considered when supplying data for custom regions to SuessR. Such 
changes are typically reported and discussed in the literature, and 
often manifest as differences between modelled and observed val-
ues for rates of δ13CDIC change in surface waters.

The SueSSR package uses the equation for calculating �p from 
Laws et al. (2002) as the framework for estimating the Laws correc-
tion; however, some components have been updated or amended 
to make using this equation simpler and to better approximate phy-
toplankton communities, as opposed to individual species. One of 
these updated pieces is a different approach for calculating the or-
ganic carbon content of the cell, C, than that originally referenced 
by Laws et al. (2002). This calculation, from Menden- Deuer and 
Lessard (2000), estimates C based on cell radius, r. The incorpora-
tion of this new correction means that only the average cell radius, 
r (in µ), needs to be supplied to SuessR, simplifying the process for 
users to generate calculations using data appropriate to their region 
of interest. To most closely approximate the organic carbon con-
tent of the phytoplankton community, SuessR uses the equation 

C
(

pg ⋅ cell− 1
)

= 0.216 × cell volume0.939, where cell volume is measured 
in µ3. This assumes a taxonomically diverse group of protist phyto-
plankton, but excludes large diatoms with cell volumes >3,000 µm3. 
Researchers specifically studying diatoms, dinoflagellates or food 
webs based primarily on these groups might prefer to use the re-
lationship between organic carbon content and cell size specific to 
these groups, as reported by Menden- Deuer and Lessard (2000); 
however, SuessR currently does not support the use of these equa-
tions, and the Laws correction would need to be calculated manually. 
For the majority of phytoplankton communities, however, the equa-
tion employed by SuessR should adequately approximate C. Hilton 
et al. (2006) and Misarti et al. (2009) assumed an average cell ra-
dius of 10 µ; however, estimates of phytoplankton size distributions 
from the published literature indicate that this is likely too large to 
be representative of the average cell size across most phytoplankton 
communities (e.g. Acevedo- Trejos et al., 2014; Bolaños et al., 2020; 
Laney & Sosik, 2014; Marañón, 2015; Polovina & Woodworth, 2012). 
To better approximate a community average, and to incorporate the 
nanoplankton and picoplankton that make up a large proportion of 
phytoplankton biomass, SuessR uses an average cell radius of 5 µ for 
the built- in regions in the subpolar North Pacific and North Atlantic. 
This number is supported by the published literature and appears to 
be a good approximation of the average community cell size in sub-
polar environments (Bolaños et al., 2020). As with the equation for 
calculating cell volume, researchers focusing on a food web based on 
larger or smaller phytoplankton could choose to improve the accu-
racy of their Laws corrections by supplying a different average cell 
radius to SuessR using the SuessR.custom() function.

In addition to the new value for r and the updated calculation 
for C, SuessR also incorporates a method for calculating phytoplank-
ton community growth rate estimates, µ, based on sea surface tem-
perature (SST). The equation for the relationship between SST and µ 
comes from the following Q10 model, as parameterized by Sherman 
et al. (2016), and allows growth rate estimates to shift in response to 
changes in SST since 1850:

In this equation, T represents SST (in degrees Kelvin). As with the up-
dated calculation for C, this new equation for estimating µ reduces the 
number of parameters required by the Laws correction, thus simplify-
ing the process of supplying custom data to calculate corrections for 
regions not built into the SueSSR package.

Because both C and P scale in relation to the radius of the cell, 
cell size plays a critical role in determining the magnitude of the 
overall Laws correction. A sensitivity analysis was conducted to 
examine the impact that each parameter in the Laws equation had 
on the magnitude of the overall Laws correction, given a small (1 µ), 
medium (5 µ) and large (10 µ) cell radius (Figure 3). For this analysis, 
p (from P = p × cell surface area), β, SST and [CO2]aq were each al-
lowed to vary while the others were held constant. Random values 
for the varying parameter were sampled from a normal or gamma 
distribution with a mean and variance based on estimates from the 
published literature (Table S2), and the others were held constant at 
their means. The resulting values were then supplied as parameters 
to the Laws equation to calculate an estimate of phytoplankton 13C 
fractionation (εp). This process was repeated 10,000 times for each 
cell radius (1 µ, 5 µ and 10 µ). The εp values that resulted from varying 
each parameter were then plotted (Figure 3). For all parameters, the 
magnitude of the observed differences increased with increasing cell 
size. At a radius of 1 µ, none of the parameters produced substantial 
differences in the overall εp when varied. At 10 µ, these differences 
were much larger, and if allowed to vary together, would be expected 
to compound one another. Finally, the analysis was repeated with all 
parameters allowed to vary independently.

The results of the sensitivity analysis are important to the in-
terpretation and application of the Laws correction. Varying [CO2]aq 
and SST resulted in moderate changes to εp, whereas varying β had 
little effect on this value (Figure 3). The effects of [CO2]aq and SST 
were expected, as they were the primary reason for calculating εp. 
Increasing [CO2]aq resulted in larger εp values, whereas increasing 
SST resulted in smaller values for εp. The sensitivity analysis also in-
dicated that εp is strongly impacted by changes in cell size, which not 
only changes the calculated value of εp (larger cells = lower εp values) 
but also compounds the effects of varying the other parameters. 
Hilton et al. (2006) used a cell radius of 10 µ to estimate the Laws 
correction parameters, and this value was carried forward by Misarti 
et al. (2009). The sensitivity analyses revealed that cell radius inter-
acts with each of the other variables in the equation, with larger cell 
sizes resulting in a greater change in εp when each of the other pa-
rameters is allowed to vary (Figure 3). The greater variability at larger 

� = 0.89 × 1. 47
T − 303.15

10
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F I G U R E  3   Results of the sensitivity analyses of the Laws correction parameters. Top panel presents the distribution of εp (‰) at three 
different cell radii (10 µ— lightest shade, 5 µ— medium shade and 1 µ— darkest shade) when all parameters (p, β, SST and [CO2]aq) were varied 
independently. Bottom panels show the distribution when only one parameter was varied (left panels, top to bottom: p, β, SST, and [CO2]aq) 
and lines depicting the relationship between the output data and the input values for each parameter when other parameters were held 
constant (right panels, same order). Means and standard deviations of the distributions from which input values were drawn are presented in 
Table S2
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cell sizes is most apparent in the scenario in which all parameters are 
allowed to vary, with small cells exhibiting almost no variability in εp, 
and large cells varying much more widely. Thus, selecting an average 
cell radius that best characterizes the phytoplankton communities 
responsible for the bulk of the primary production in the region of in-
terest is the most important consideration when selecting variables 
to estimate Laws corrections for a new region. Although published 
estimates of size distributions within phytoplankton communities 
are becoming more common in recent years (e.g. Acevedo- Trejos 
et al., 2014; Bolaños et al., 2020; Laney & Sosik, 2014; Marañón, 
2015; Polovina & Woodworth, 2012), there is currently a dearth of 
empirical data for estimating average cell radius, and more research 
is needed to better characterize phytoplankton cell size distributions.

The term describing the permeability of the plasmalemma to 
CO2, p, adds additional complications to calculating the Laws cor-
rection. The overall carbon fractionation, εp, is highly sensitive to 
changes in p (Figure 3). As p approaches zero, the calculated εp val-
ues rapidly decline, particularly for larger cells. In their original cal-
culations, Laws et al. (2002) used 1 × 10– 5 m/s, as a ‘working mean’ 
of the maximum and minimum literature values. Note the differ-
ence in units between literature references to p (m/s), and the units 
required for the Laws correction (m/day). For SuessR’s calculations, 
the value chosen for p (1.5 × 10– 5 m/s = 1.296 m/day) is the median 
of 27 estimates of p from the published literature (Table S3). This 
value is on the cusp of the sharp declines in εp visible in Figure 3 
that resulted from small decreases in the value of p. The fact that 
it is slightly larger than the value used by Hilton et al. (2006) and 
Misarti et al. (2009) is responsible, in part, for the smaller Laws cor-
rections calculated by SuessR, as compared to these two papers. 
The value used by SuessR is calculated using data from a variety of 
phytoplankton groups and is likely a good representation of a com-
munity average value for p. That said, the sensitivity of the Laws 
correction to p, as well as the relative lack of understanding of the 
natural variability in this term, suggests that it warrants further 
research. Many of the smaller p values in the published literature 
(Table S3) would result in unrealistic estimates of εp, and models 
suggest that values of p substantially smaller than 1 × 10– 4 m/s are 
unlikely to be representative of marine phytoplankton species that 
rely primarily on diffusive uptake of CO2 (Rau et al., 1996). Future 
research that generates a better understanding of p will help to 
constrain this term, and may provide a more realistic estimate of 
the average p across phytoplankton communities for use in calcu-
lating the Laws correction.

3.4 | Example application

The SueSSR package contains three functions. SuessR() calculates Suess 
and Laws corrections for samples collected in one of the four built- in 
regions. SuessR.custom() allows users to correct δ13C data from a region 
not built into the SueSSR package by supplying the region- specific pa-
rameters required to calculate the corrections. The reg.uptake() func-
tion allows users to calculate the regional uptake constant (‘a’ from the 

Suess correction equation, and ‘up.con’ in the SuessR.reference.data 
file, Supporting Information Dataset SD1) for a particular region based 
on empirical measurements of δ13CDIC changes (proxy for the magni-
tude of the Suess effect) from that region. Data supplied to SuessR for 
corrections must follow a specific format for use by the package. These 
data files must contain a column for the sample ID (‘id’), year of sample 
collection (‘year’), region of sample origin (‘region’) and the uncorrected 
δ13C data (‘d13c’), otherwise an error is returned. Table 1 contains an 
example dataset with 10 samples from two regions.

Once the data have been loaded into R, the SuessR() function 
can be used to calculate the Suess and Laws corrections and apply 
them to the uncorrected δ13C data. This function uses the built- in 
reference dataset (SuessR.reference.data; Supporting Information 
Dataset SD1) to calculate and apply the corrections. It references 
the region and year provided for each sample, so samples from dif-
ferent regions and periods can be corrected simultaneously. Upon 
completion, SuessR returns the results for each sample, which in-
clude the uncorrected δ13C data (‘d13c.uncor’), the Suess correction 
(‘Suess.cor’), the Laws correction (‘Laws.cor’), the net correction 
(‘net.cor’) and the corrected δ13C data (‘d13c.cor’; Table 2). The 
Suess.R() function also includes an optional argument ‘correct.to’ 
with a default of 1850 to correct for the entire Suess effect since 
the Industrial Revolution; however, some users may want to correct 
δ13C data to a specific year, rather than back to preindustrial values. 
For example, a user analysing a dataset of δ13C values spanning the 
years 1980– 2000 might only want to correct for the Suess effect 
after 1980, or might want to correct samples forward to the year 
2000 to make their data comparable. The ‘correct.to’ argument al-
lows users to specify a year to which the data should be corrected. 

TA B L E  1   Example input dataset for the SuessR() or SuessR.
custom() functions. Columns must include sample id, year of sample 
collection, region of sample collection and uncorrected δ13C data 
(in ‰), named ‘id’, ‘year’, ‘region’ and ‘d13c’, respectively. Note 
that the SuessR.custom() function also requires the user to supply 
region- specific data of the type included in the built- in reference 
dataset SuessR.reference.data; Supplementary Dataset SD1)

Id Year Region d13c

Sample 001 1945 Aleutian Islands −13.8

Sample 002 1973 Aleutian Islands −14.5

Sample 003 1988 Aleutian Islands −13.0

Sample 004 2001 Aleutian Islands −12.9

Sample 005 2010 Aleutian Islands −15.2

Sample 006 1895 Subpolar North 
Atlantic

−14.6

Sample 007 1953 Subpolar North 
Atlantic

−14.5

Sample 008 1965 Subpolar North 
Atlantic

−14.2

Sample 009 1999 Subpolar North 
Atlantic

−14.0

Sample 010 2007 Subpolar North 
Atlantic

−13.7
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When publishing δ13C data corrected by SuessR, it will be important 
to make clear the year to which the data have been corrected.

SuessR contains an additional function, SuessR.custom(), which 
allows users to supply their own regional parameters for the Suess 
and Laws corrections. These supplied parameters are appended to 
the built- in SuessR.reference.data (Supplementary Dataset SD1) 
and must be supplied in the same format. To input data for a cus-
tom region, the user must first create a data frame with the regional 
parameters for the Suess and Laws corrections. This data frame 
can then be called using the ‘custom.region.data’ argument in the 
SuessR.custom() function. The name of the custom region should be 
specified in the ‘region’ column of the data frame, and this region 
must be specified when δ13C values for this region are supplied for 
correction. Because the parameters chosen will determine the final 
values for the Suess and Laws corrections, it is critical that they are 
carefully selected and vetted before being supplied to SuessR. It is 
the authors’ hope that users will submit the parameters for their 
custom regions along with the associated references to be incorpo-
rated as built- in regions in future versions of SuessR. These custom 
data can be submitted to the corresponding author of this paper or 
to the maintainer of the SueSSR package, as laid out in the package 
documentation.

The reg.uptake() function is used to calculate the regional uptake 
constant for a region, which can be supplied to the SuessR.custom() 
function as part of the ‘custom.region.data’ object. This function re-
quires three arguments: ‘year1’, ‘year2’ and ‘d13c.change’. The term 
‘year1’ indicates the calendar year in which the first δ13CDIC observa-
tion was made, whereas ‘year2’ is the year in which the last δ13CDIC 
measurement was taken. ‘d13c.change’ represents the magnitude of 
change in δ13CDIC (in ‰) observed between those years. Because 
of the potential biases and problems associated with snapshot esti-
mates of δ13CDIC, many of the more current studies in the published 
literature use a multiple linear regression approach to estimating the 
change in δ13CDIC through time (Quay et al., 2007). This method more 
effectively separates natural and anthropogenic δ13CDIC changes by 
accounting for seasonal variability in δ13CDIC, and predicts δ13CDIC 
using measured hydrographic data. The regressions typically provide 
a linear approximation of δ13CDIC changes (e.g. −0.018‰ per year 

from 1990 to 2000). In this example, ‘year1’ would be 1990, ‘year2’ 
would be 2000 and d13c.change would be −0.198‰ (−0.018‰ 
year−1 × 11 year). The resulting regional uptake constant would be 
a = −0.015.

4  | CONCLUSIONS

The SueSSR package provides a widely accessible, customizable and 
easy to use tool that allows ecologists to apply corrections to ac-
count for the influence of anthropogenic CO2 on marine δ13C data. 
For samples collected in 2020, SuessR estimates a net correction of 
1.29‰ for the Bering Sea, 1.30‰ for the Aleutian Islands and Gulf 
of Alaska, and 1.31‰ for the Subpolar North Atlantic. The correc-
tions produced by SuessR align well with recent literature estimates 
of the magnitude of the Suess effect since the preindustrial era (Eide 
et al., 2017), and the shape of the Suess correction curve closely 
follows the independently generated atmospheric curve published 
by Verburg (2007), with the expected offset between changes in 
atmospheric and oceanic δ13C values (Figure 1). The exponential 
nature of the Suess effect, coupled with a greater recognition of 
the importance of long- term datasets in ecological research, mean 
that the application of Suess corrections is no longer just a problem 
faced by archaeologists, palaeoecologists and historical ecologists. 
In contrast, the output of the updated Laws equation implemented 
by SuessR indicates that temperature-  and CO2- related changes in 
fractionation by marine phytoplankton are less important than pre-
viously thought, although this may apply only to the subpolar regions 
built into the package, and not at lower latitudes (Young et al., 2013). 
The results of some studies indicate that increasing temperature 
and CO2 concentrations might cause much larger changes in stable 
carbon isotope fractionation by marine phytoplankton (εp) than pre-
dicted by SuessR (Cullen et al., 2001; Young et al., 2013), due primar-
ily to the use of different methods of calculating εp. Further study is 
merited to determine which approach better characterizes marine 
phytoplankton communities, and some updates to SuessR may be 
required in the future if another method of calculation is found to 
be more accurate. Improvements and updates to future releases of 

Id Year
d13c.
uncor Laws.cor Suess.cor net.cor

d13c.
cor

Sample 001 1945 – 13.8 0.006 0.156 0.162 – 13.638

Sample 002 1973 – 14.5 0.016 0.347 0.363 – 14.137

Sample 003 1988 – 13.0 0.021 0.527 0.548 – 12.452

Sample 004 2001 – 12.9 0.025 0.754 0.778 – 12.122

Sample 005 2010 – 15.2 0.028 0.964 0.993 – 14.207

Sample 006 1895 – 14.6 0.001 0.031 0.031 – 14.569

Sample 007 1953 – 14.5 0.010 0.197 0.206 – 14.294

Sample 008 1965 – 14.2 0.012 0.277 0.289 – 13.911

Sample 009 1999 – 14.0 0.031 0.713 0.744 – 13.256

Sample 010 2007 – 13.7 0.030 0.888 0.919 – 12.781

TA B L E  2   Output from the SuessR() 
function when supplied the example 
input data from Table 1. Columns include 
sample id (‘id’), year of sample collection 
(‘year’), uncorrected δ13C data (‘d13c.
uncor’, in ‰), the magnitude of the 
estimated Laws correction (‘Laws.cor’, 
in ‰), the magnitude of the estimated 
Suess correction (‘Suess.cor’, in ‰), the 
magnitude of the estimated net correction 
(‘net.cor’, in ‰) and the corrected δ13C 
data (‘d13c.cor’, in ‰)
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SuessR will rely, in part, on better constraints on model parameters, 
including r (the average community cell radius) and p (the perme-
ability of the plasmalemma to CO2), which are particularly important 
to improving the Laws correction. Future versions of the Laws cor-
rection might be improved using an iterative process to draw cell 
sizes from a distribution representing a phytoplankton community, 
rather than summarizing the community to a single mean value. 
Similarly, an update to the long- term changes in δ13CDIC modelled 
by Gruber et al. (1999) will be important to verify that the original 
Suess correction equation published by Hilton et al. (2006) is still 
an adequate characterization of the magnitude of the oceanic Suess 
effect. Furthermore, as some areas of the surface ocean become 
saturated with CO2, the dynamics of the oceanic Suess effect will 
change in ways that are not currently characterized by the Suess 
correction. As with any data correction approach, it is important to 
consider the possibility of bias or error within the correction itself, 
and presenting both the uncorrected and corrected data is strongly 
encouraged. This allows researchers and subsequent users of the 
data to assess the impacts of applying the correction, and to ex-
plore alternate hypotheses for observed variability in stable carbon 
isotope values. Despite these uncertainties and ways in which the 
Suess and Laws corrections may be refined in the future, the cor-
rections produced by SuessR match with reported estimates of the 
magnitude of the Suess effect in the surface ocean. This tool has the 
potential to improve future research by providing a unified approach 
to calculating and applying Suess corrections for marine δ13C data, 
that is easy to access and free to use. Furthermore, submission of 
compiled regional environmental data by users will allow for more 
built- in regions to be added in future versions of SuessR, further in-
creasing its ease of use. Custom regional data can be submitted to 
the corresponding author or to the SuessR maintainer as designated 
in the package's documentation.
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